
Transforming TurboIMAGE Data

042 1

Transforming TurboIMAGE
Data for Eloquence, Oracle,

and More

By Bob Green, Robelle
bgreen@robelle.com

Transforming Your TurboIMAGE Data - paper 1003

Practical tips on how to transform TurboIMAGE data so that it can be used in other
databases:

Image to Eloquence
Cleaning Your Data
Image to Oracle on HP-UX
Image to SQL Server
Image to mySQL
Image to PostgreSQL

Special Cases:
Combining Image Note Fields into Large SQL Text Fields

Presenter:
Bob Green is the founder of Robelle, an HP vendor since 1977.
Email: bgreen@robelle.com
Web: www.robelle.com/library/papers/transform.pdf

Transforming TurboIMAGE Data

042 2

Transform to Eloquence/UX
• Migrate your data without change
• Use -T option on Schema Processor
• Eloquence handles all IMAGE

datatypes, except j (COBOL integer)
which is mapped to i

• Suprtool supports Eloquence, other
MPE tools to follow

Eloquence is an IMAGE-like database that runs on HP-UX, LINUX and Windows
NT/2K. Eloquence was created in 1989 to migrate HP 250/260s.

Eloquence home page: www.hp-eloquence.com

Marxmeier Software AG: www.marxmeier.com

Email contact at Marxmeier: info@marxmeier.com

Eloquence reseller/support: www.eloquence3000.com

Eloquence 7 maps datatype J to I because J is not supported by the database kernel.
It doesn't really matter, as J is only a COBOL documentation thing. You would need
to do all database edits with COBOL programs with PIC 9999 without sign to
enforce this, since IMAGE doesn't enforce the J edits. R is mapped to E because
HP-UX has only IEEE floating point, not the old floating-point format of the
original 1970 HP 3000, but hopefully you are not using that anymore anyway! If
you find that you are, then Suprtool can convert from Oldreal to IEEE real.

Robelle converted Suprtool for HP-UX to support Eloquence and completed the
project in March 2002. Other vendors have announced plans to support Eloquence
and HP has blessed it as a migration option for small to medium-sized databases.
Besides being much cheaper than an Oracle solution, the performance is better than
an IMAGE wrapper for Oracle.

Transforming TurboIMAGE Data

042 3

TurboIMAGE to Eloquence
• Install the DBEXPORT utility on

HP3000
• Export the database
• Create and import the database on

Eloquence

Eloquence allows you migrate data without any conversion issues. See:
http://hp-eloquence.com/hp3k/migration.html

Eloquence provides the dbexport and dbimport utilities to unload a database to one
or multiple files or respectively load a file into the database. The export files are text
files which follow a simple syntax. An equivalent DBEXPORT utility is available
for the HP3000 and can be used to unload your database. It can be downloaded from
the Eloquence server.
Usage: DBEXPORT [-p password] database [set [...]] Specify the -help command
line option to get information on usage.
When running from the MPE shell (CI) you need to enclose the arguments in
quotes. : DBEXPORT "-p SECRET -v SAMPLEDB"
Transfer your schema files and the export files to the Eloquence system. When
using ftp please make sure to use binary mode to transfer the export files. On
Eloquence, run the schema and dbcreate utility and then use dbimport to fill the
database: $ dbimport database
On the Windows and Linux platform you should use the -z roman8 commandline
option of dbimport to make sure any national charaters ("Umlaute") are converted
properly. Please note: Unless you import a trivial volume of data you may want to
consider to set the SyncMode = 0 in your eloqdb6.cfg configuration file during the
dbimport.

Transforming TurboIMAGE Data

042 4

Cleaning Your Data
• Imports can fail due to invisible

characters
• Common: Linefeed, Tab, Escape
• Use Suprtool’s Clean command

set CleanChar "."
clean "^9","^10

It is very frustrating to have a data migration fail because your HP 3000 data fields
contain characters, usually invisible, that make the database import fail on your
target machine. Sometimes un-printable or extraneous characters get stored in files
or databases that have no business being there. This may be some tab characters in
an address field or perhaps an embedded carriage return or line-feed. What you need
is a way to "clean" your data before moving it to a new home.
Suprtool has just such a feature, called the Clean Command. There are three things
that Suprtool needs to know in order to "clean" a field: which characters to clean,
what character to change the "bad" characters to, and also what field to clean.
The Clean command tells Suprtool what characters to look for in a given byte type
field. For example:

clean "^9","^10"
will tell Suprtool to replace the Tab character (Decimal 9) and the Line Feed
(Decimal 10) to whatever the Clean character is set to. The Clean command takes
both, decimal notation and the character itself, however, it is probably most
convenient to use the Decimal notation for the characters that you wish to clean.
The Decimal notation is indicated by the "^" character.
Setting the Clean Character - By default, Suprtool replaces any of the characters
specified in the Clean command with a space. You can specify what character to use
to replace any of the characters that qualify with the Set CleanChar command:

Transforming TurboIMAGE Data

042 5

Example of Cleaning
>base mydb,1,; get customer
>clean "^9","^10","^0","^7"
>set cleanchar " "
>update
>ext address(1) = $clean(address(1))
>ext address(2) = $clean(address(2))
>ext address(3) = $clean(address(3))
>xeq

Cleaning a Field - In the If and Extract commands, you call the Clean function the
same way you normally use other functions. For example:

ext address1=$clean(address1)

This shows how to clean the field address1. The target field does not have to be the
same as the source field.

def new-address,1,30

ext new-address=$clean(address1)

An example of cleaning your data – the example on the slide looks at the three
instances of address and replaces the tab, linefeed, null and bell with a space.
STExport can also clean, but can also automatically clean all the byte type fields for
a given SD file.

$in mysdfile {the default CleanChar is “ “}
$clean "^9","^10","^0","^7"

$out myexport

$xeq

Advanced Clean Syntax – specify the decimal value of the character and specify a
range of characters:

Clean "^0:^31","^240:^255"

Transforming TurboIMAGE Data

042 6

TurboIMAGE Datatypes
• Subitemcount Datatype Subitemlength
• X, U - character data
• Z - zoned numeric bytes, overpunch
• I, J, K - integers
• E - floating point (R is deprecated)
• P - packed decimal

A typical data item definition is J2, where J is the Datatype and 2 is the
SubItemLength, or 5X8 where 5 is the Subitemcount and 8 is the SubitemLength.
The type designators are E, I, J, K, P, R, U, X, and Z.

E = ieee floating point. sub-item length is in halfwords (R is old floating point, you
should not be using that).

I = signed integer, sub-item length is in halfwords

J = signed integer, but conforms to COBOL standards (i.e. S9999 should not have
any values greater than 9999). sub-item length is in halfwords

K = unsigned integer, no negative value. 1 halfword = 0-65K, 2 halfwords= 0-2
Billion, sub-item length is in halfwords

P = packed decimal, sub-item length is in nibbles, 2 to 28, with one digit used for
the sign (note: TurboIMAGE will let you create a P48 or even larger, but COBOL
will not process it).

U = uppercase ASCII chars, IMAGE does not enforce uppercase!

X = any ASCII characters, sub-item length is in bytes.

Z = zoned decimal number. sub-item length is in bytes. Overpunch sign.

Transforming TurboIMAGE Data

042 7

Language Compatibility
• COBOL: i1 i2 i4 x u z p
• FORTRAN: i1-i2 e2 e4 x u
• Powerhouse: i1-i4 e2 e4 x u z p
• j1,j2,j4 are odd, think of them as i’s

Although TurboIMAGE does not place any restrictions on the reasonableness of
item datatypes (i.e., you can define J25 if you wish) and does not validate values
before inserting them into the database, most TurboIMAGE databases use only the
data types that can be processed by the programming languages on the HP 3000.

I3 is a 6 byte integer, supported only in Powerhouse and Suprtool. I4 is an 8-byte
integer that is supported in COBOL, Suprtool and Powerhouse only. Expect possible
migration problems with these fields.

J1 is 2-byte integer for COBOL PIC S9999; I.e. it should not have any values
greater than 9999 or less than -9999, but IMAGE does not enforce this, so you can
treat it as I1 in Fortran and Powerhouse. Same for J2 and J4. J3 will probably work
in Powerhouse.

K1 Logical, 2 bytes, unsigned integer, define as Logical in Fortran, not supported in
COBOL. Suprtool and Powerhouse support K2 and K3.

Zn Zoned-Decimal, n bytes, s(n) Display in COBOL, overpunched

Pn Packed-Decimal, n/2 bytes, s9(n-1) Comp-3 in COBOL, not supported in
Fortran. Maximum N in HP COBOL is 19 (18 digits plus a sign).

Transforming TurboIMAGE Data

042 8

TurboIMAGE Data to Oracle
• Internal datatypes:

Number, Char, Varchar2, Date
• External datatypes - how Oracle

delivers the data to a program:
Integer, Char, Floating-point, Packed-

decimal

Oracle has internal datatypes and external datatypes. The internal datatypes are the
format that Oracle actually stores the data in. However, these internal datatypes,
might not be recognized by any of the standard programming languages. For
example, Number is a variable-length format, with one byte used to store the
exponent and up to 20 bytes to store the mantissa.You cannot process such a number
directly in Fortran, COBOL, or C. Therefore, Oracle also has external datatypes,
which are the formats that Oracle is willing to transform into for calling code
written in languages that include C, COBOL, Fortran and Java.

Oracle 7 Internal Datatypes:

CHAR for X/U fields of up to 255 characters.

VARCHAR2 for X/U fields up to 2000 characters.

NUMBER for I/J/K/P/Z fields, up to 38 digits.

DATE for any field that contained a date value, such as SHIP-DATE X8, or DUE-
DATE J2, or ORDER-DATE Z8. The Oracle date can also hold the time.

Oracle 8i and 9i Internal Datatypes:

CHAR can hold up to 2000 characters, VARCHAR2 can hold up to 4000 characters.
So it appears that converting our datatypes to Oracle is straightforward.

Transforming TurboIMAGE Data

042 9

Transforming Decimal Data
• Export numbers as char, with decimal
• Define Oracle field as NUMBER (x,y),

where x is the total number of digits and
y is the scale factor.

• SQL interface for COBOL can extract
the NUMERIC field as Packed Dec so
you don’t have to change your Copylib

When exporting Image datasets to other sources, one of the common transfer file
formats used is the "comma separated values" or CSV format. This is generally a
flat file with one record per line, quotes around fields and commas between fields.

"cust-id","comment"
"12A","want web delivery"

Suprtool and other tools have options to generate CSV files. You will find
Suprtool’s Item command handy for defining the decimal place in your
TurboIMAGE fields.

You will want the export file to have an explicit decimal place "." in numeric values
where appropriate, since Oracle understands decimal places and remembers them.
With a Display format, you only need to include an explicit decimal point as in
1234.89. STExport does that automatically when properly configured (Item
command in Suprtool and Decimal Period in STExport).

SQL*Loader takes care of the alignment with the column definition e.g.
NUMBER(12,2). If the file contains more decimals than the column definition,
SQL*Loader rounds it up. For example, if you try to load 1234.5398 into
NUMBER(12,2), the table will contain 1234.54. Negative values must have a
leading sign (Sign Leading in STExport).

Transforming TurboIMAGE Data

042 10

STExport for SQL*Loader
!RUN STEXPORT.PUB.ROBELLE
IN DMRTABHM
ZERO LEADING
QUOTE NONE
COLUMNS FIXED
SIGN TRAILING
OUTPUT ABHMDATA
EXIT

If you used Suprtool to extract a dataset into a file, you can use Suprtool’s STExport
to prepare the data in a format that the Oracle SQL*Loader will accept. STExport
lets you define the format of numeric data, including leading zeros and the position
of the sign.

The resulting files are sent using the HP 3000's FTP client to the target computer
where the Oracle database resides.
!COMMENT *** FTP OUTPUT FILES TO DATAMART ***
!RUN FTP.ARPA.SYS
open 123.456.789.012
user <<login string and password>>
ascii
exitOnError
cd /isdmdata
cd macsdata_in
put ABHMDATA.pub.hsmacs ABHMDATA.txt
dir
quit

In SQL*Loader, use the Load Data command with the FIELDS TERMINATED
BY “,” clause to insert the data into your table. This is just one example, with
fixed-length fields. STExport and SQL*Loader also have options to use variable-
length fields.

Transforming TurboIMAGE Data

042 11

Oracle Can’t Deliver as I4
• COBOL program can retrieve Number

values in Integer (i1 and i2), Packed
Decimal, or Zone Decimal format

• Retrieve as Packed field for COBOL
instead

• Change COBOL PIC to COMP-3

What if you have a field that looks like this in COBOL on MPE?
05 EXT-PRICE S9(10)V9(2) COMP.

In TurboIMAGE, this would be a J4, which converts to Number as the Oracle
internal datatype.

But Oracle does not have an external datatype of 64-bit integer!

So you will have to use Packed-Decimal as the external datatype.

Which means changing the COBOL definition to
05 EXT-PRICE S9(10)V9(2) COMP-3.

Now your programs are different and any files you create with this data will
probably need new data definitions.

Note: If your internal Number field has decimal positions, then you will need to
always convert it to an external Packed datatype (COMP-3). If you tried to convert
it to an external Integer datatype, you would lose the decimal places. This is true
regardless of the size of the field.

This does not sound too bad, unless you want to keep the same source on MPE and
UNIX. Or if you have hundreds of tasks that may process this data!

Transforming TurboIMAGE Data

042 12

TurboIMAGE to SQL Server
• Tinyint(byte), Smallint(i1), Integer(i2)

and Bigint (quad, i4)
• Number (precision,scale)
• Float(n) where N is the number of bits in

the mantissa (<25 bits is 4 bytes Real,
25> is 8 byte Long).

For integer values without a decimal place, use one of the Integer datatypes: Tinyint
(values 0 to 255), Smallint (-32,768 to +32,767), Integer (-2B to + 2B), Bigint (for
very large values, up to 18 digits; introduced in SQL Server 2000 -- ensure that your
Windows COBOL compiler supports Bigint).

NUM or NUMBER or DEC = numbers with decimal places. You specify a precision
and scale for the values. Precision is the maximum total digits in the values, with 38
the largest allowed by SQL Server. Scale is the number of places to the right of the
decimal. The maximum number of digits that can be placed to the left of the
decimal is precision-scale. For example, DEC(7,2) means the same as S9(5)V9(2) in
COBOL. NUMERIC or FLOAT is the datatype for any value with a decimal place.
NUMERIC in SQL Server is much like NUMERIC in Oracle, although it does not
have the odd "negative scale factors" of Oracle (scale factor-3 in Oracle actually
multiplies the value by 1000!).

FLOAT(n) = approximate numeric values in floating point format. Supported in 4
byte and 8 byte formats. A floating point number has an exponent and a mantissa.
FLOAT(n) specifies number of bits for the mantissa, which can be up to 53. 1
through 24 specify a single precision real (4 bytes) and 25 through 53 specify
Double Precision (8 bytes). Same as e2 and e4 in TurboIMAGE.

Other SQL Server datatypes that you will find useful are MONEY and DATETIME.

Transforming TurboIMAGE Data

042 13

What about Compound Items?
• TurboIMAGE has 5x10 for an array of

five elements, each with 10 characters.
• This is called a compound item
• Not supported in SQL databases
• Convert each element to a separate

column: address1, address2,
address3…

M-CUSTOMER Master Set# 1

Entry: Offset
CITY X12 1
CREDIT-RATING J2 13 <<0.00>>
CUST-ACCOUNT Z8 17
CUST-STATUS X2 25
NAME-FIRST X10 27
NAME-LAST X16 37
STATE-CODE X2 53
STREET-ADDRESS 2X25 55
ZIP-CODE X6 105

Capacity: 211 (7) Entries: 12 Bytes: 110

The repeated item STREET-ADDRESS (2X25) converts into ADDRESS1 and
ADDRESS2 in SQL, since SQL does not have repeated data items.

get m-customer; define address1,street-address(1)

define address2,street-address(2);

extract address1, address2

CUST-ACCOUNT is only Z for hashing, so convert it into INT.

Since CREDIT-RATING values have 2 decimal places, convert into the NUMBER
datatype, which understands decimal places.

Transforming TurboIMAGE Data

042 14

Find a COBOL Precompiler
• MS SQL Server has no COBOL

precompiler
• But AcuCOBOL has one
• Microfocus Cobol says get precompiler

from your database vendor
• New languages have interfaces to most

databases: C++, Java, Perl, Php, etc.

With Oracle, the package comes with pre-processors for Fortran and COBOL, but
SQL Server only provides a pre-compiler for C++. What if you want to do SQL
Server functions in your COBOL program? You need to look to your compiler
vendor.

For example, AcuSQL has an Embedded SQL (ESQL) precompiler that lets you
embed standard SQL directly into ACUCOBOL program.

www.acucorp.com/Solutions/access3.html

www.acucorp.com/Solutions/acusql.html

However MicroFocus COBOL says "COBOL precompilers for the different
databases should be obtained from the appropriate database vendor."

Fujistu COBOL has Access to SQL Server via .the ODBC interface..

I looked for a FORTRAN precompiler for SQL Server, but did not find one, so that
problem is left to the reader. Keep in mind the database you select may not have
precompilers for all your programming languages.

Transforming TurboIMAGE Data

042 15

TurboIMAGE to mySQL
• mySQL is an open source database
• Commonly used as a web backend
• Simple, fast, but limited
• www.mysql.com
• As an experiment we replicated an

IMAGE database in mySQL

mySQL is an Open Source database that is commonly used as the backend database
server for many Web applications on Linux and Unix platforms as well as Windows
machines.

The source and or binaries can be obtained from www.mysql.com or
www.sourceforge.net and many other download mirrors around the globe.

As an experiment we built a mySQL database that looked like an Image database,
building a simple Master dataset and a single detail dataset. The byte type fields in
Image were created as char fields. The I2 or J2 fields were created as int fields.

Having done this, we extracted data from the HP 3000 database using Suprtool and
then used default STExport settings to output a file that was comma delimited, with
each text field enclosed in quotes.

We then attempted to import the comma-delimited file into mySQL.

Transforming TurboIMAGE Data

042 16

Importing into mySQL
LOAD DATA 'file_name.txt'

INTO TABLE tbl_name
[FIELDS

[TERMINATED BY '\t']
[[OPTIONALLY] ENCLOSED BY '']
[ESCAPED BY '\\']]

[LINES TERMINATED BY '\n']

In investigating how to import data into mySQL, we first tried the mySQLImport
program, but it didn't seem as robust and we could not figure out how to tell it what
delimiters to use. In looking at the documentation, we thought that the LOAD_FILE
command might work, but further investigation showed that this command opens
the file and returns the contents as a string. This feature is only used by Text and
Blob columns of mySQL.

We finally had success with the LOAD_DATA statement. If you don't specify a
FIELDS clause,the command acts as follows: Look for line boundaries at
newlines; break lines into fields at tabs; do not expect fields to be enclosed within
any quoting characters; interpret occurrences of tab, newline, or `\' preceded by `\' as
literal characters that are part of field values.
If you specify a FIELDS clause you can change the delimiter from Tab to comma
(or another character).

We had trouble with the comma delimiter, because our actual data contained
commas, so we used question mark as the field delimiter (or we could have used
Tab). In order to import fields exported with “?” as the delimiter, we used fields
terminated by '?’ in the LOAD_DATA command.

Notice the Escaped By clause which avoids load errors by putting an Escape
character (usually \) in front of every delimiter character in your data: “ , and \.
The Escape option in STExport will generate this format.

Transforming TurboIMAGE Data

042 17

TurboIMAGE to PostgreSQL
• Full-feature SQL database
• Use Copy command to load from file
• Default separator is tab (\t)
• Supports quad integers I4 (int8)

PostgreSQL is an Object-Relational database management system that supports
almost all SQL constructs, including subselects, transactions, and user-defined types
and functions. It is free to download, use, and modify, and it runs under many OS
types, including Unix and Windows.
For an experiment, we created an address table and loaded it from a Comma
Delimited data file.The next step was to populate the table with the data from the
text file. This was easy to do by using the COPY command, which loads large
amounts of data (either character or Binary) from flat-text files. You tell COPY
which file to load by specifying FROM '/directory/file'. By default,
COPY uses a tab ("\t") character as a delimiter between fields, I had to change this
behavior by including USING DELIMETERS ','
The COPY command, however, has a few potential pitfalls. Such as if you don't
have enough columns in the file, you will get an error, but if you have too many
columns you will get a warning only and the extra columns are ignored. Also
remember that COPY is executed as a transaction, meaning that a single error in the
data causes an undo of the entire import operation. As always it is good practice to
read over the intricacies of the COPY command in the PostgreSQL help docs
(http://www.postgresql.org/idocs/).
To avoid errors in your import data, use the new Clean option in Suprtool and
STExport -- it removes LF characters and other delimiters from text fields.

Transforming TurboIMAGE Data

042 18

Migrating Dates
• Most databases allow M/D/Y or D/M/Y

04/28/2002 or 28/04/2002
• ISO standard format is yyyymmdd

20020428
• Export with this format to avoid import

problems, since the month is
unambiguous

Most SQL databases allow you to import dates in either Month/Day/Year format or
Day/Month/Year, but there are still configuration commands that you must get
correct.

The ISO standard format for dates is actually
YYYYMMDD (20020428)

If you export date fields in this format, you should have minimal problems loading
into your SQL database.

On the other hand, if you have an HP 3000 date field in the form

MMDDYY 042802

and export it in that format, you will need to configure your import carefully to
ensure that your SQL database contains the correct date.

Transforming TurboIMAGE Data

042 19

Invalid and Missing Dates
• Suprtool: if $invalid(shipdate)
• If you have blank SHIPDATES, make

the SQL field Nullable
“Bob”,20030323,”101 Main St”
“Bill”,,”235 Side St”
“Sue”,,”52 High St”

• STExport: Date Invalid Null

Unlike TurboIMAGE, where date values are stored in generic data types such as X
(character) or I (integer), SQL databases have a DATE type specifically for date
values. Blanks and zero are not valid dates! Any truly invalid date values should be
fixed before exporting to another database. You can find the invalid dates easily in
Suprtool using the $Invalid function.
>base store.demo; get d-sales

>item deliv-date,date,ccyymmdd

>if $invalid(deliv-date)or deliv-date<19000101

>out baddates,link; list standard; xeq

In TurboIMAGE, applications usually initialize SHIPDATE-type fields to Blanks or
Zeroes to indicate that the value is not yet know. In SQL databases, you need to
define the column as NULLABLE. And when you load the CSV file, you can use
two commas with nothing between to indicate a Null date value.
You can use Suprtool and STExport to export TurboIMAGE date values in a form
that your SQL database will accept. By default, STExport formats invalid dates as
asterisks (****). But, there is a special option called Date Invalid Null that converts
an invalid date into a zero-length field (you must also specify variable Columns).
$input dsales; date ccyymmdd; columns none

$date invalid null

$quote double; delimiter comma

$output dsexprt $xeq

Transforming TurboIMAGE Data

042 20

Export Multi-Line Notes
• Combining multiple Image note records

into one large SQL text field
• Use a Perl program
• Full details at:
http://www.robelle.com/tips/st-
export-notes.html

There is one type of field that cannot easily be exported and loaded into SQL: Notes
fields, which span multiple records even though they are logically one field. They
usually look like the following:

cust-id seq-num comment

12A 001 want web delivery but
12A 002 limited by bandwidth,
12A 003 so use FTP.
88X 001 Send doc in PDF format.

We want to merge the related records into a single record. For example:
"12A","want web delivery but limited by bandwidth,

so use FTP."
"88X","Send doc in PDF format."

Although Suprtool cannot produce this format directly, it can front-end the database
extract portion, and let a straight-forward Perl script do the merging.

Transforming TurboIMAGE Data

042 21

Export Notes, Tab Delimited
Get Notes
Sort cust-id
Sort seq-num
Extract cust-id, ^i, comment
{tab delimited}
Out notefile
Xeq

Although Suprtool cannot produce this format directly, it can front-end the database
extract portion, and let a straight-forward Perl script do the merging. To learn more
about Perl, read our "Introduction to Perl" at www.robelle.com/tips/perl.html

1. First use Suprtool to dump the Notes dataset, sorted by customer number and
sequence number:

2. Send the resulting notefile to your other OS/directory space where Perl is
available. FTP is a reasonable choice.

3. Use the Perl script on the following page.

Transforming TurboIMAGE Data

042 22

Run the Perl Script
• Run the Perl script against your notefile

to produce the CSV file.
perl merge.pl <notefile

>note.csv

• You now have one big text record per
sequence number

$in_field_sep = "\t";

$quote = '"';

$alt_quote = "'";

$rec_sep = "\n";

$field_sep = ",";

$note_term = " ";

$keycount = 0;

$prev = "";

while ($line = <STDIN>) {

$line =~ /([^$in_field_sep]+)$in_field_sep(.*)/;

$key = $1;

$text = $2;

$text =~ s/$quote/$alt_quote/g;

if ($key ne $prev) {

if ($keycount>0) { # close previous quote

print $quote . $rec_sep;

}

print $quote . $key . $quote . $field_sep . $quote;

$keycount++;

}

print $text . $note_term;

$prev = $key;

}

print $quote . $rec_sep;

Transforming TurboIMAGE Data

042 23

Learn More
• Migration library on our web site:

suprtool.com/move

• Email me at bgreen@robelle.com

• Primary Robelle site: www.robelle.com
• Some useful web links:

www.robelle.com/books - “HP 3000 Evolution”
www.eloquence3000.com - Eloquence database

HP 3000 Evolution covers migration, homesteading, and system tune up.

